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INFORMATION COMPLEXITY IN AIR TRAFFIC CONTROL DISPLAYS

INTRODUCTION

“This thing is too complex to use!” In an age of infor-
mation technology, most new technology users have 
either said or heard this phrase at one time or another. 
Over the past several decades, computer technologies 
have achieved enormous progress in the speed at which 
they can process and present information. With these 
processing limitations overcome, the new challenge for 
developers of new technologies is to provide systems 
with more types of information to process. Such efforts 
result in information being presented in complex ways. 
Conversely, human information processing capabilities 
have not experienced the same level of improvement. 
Therefore, the complexity of information provided by new 
technologies can easily exceed human capacity limitations. 
As a result, complexity has become a big concern in the 
information technology industry. A survey (Economist, 
Oct. 28, 2004) indicated that information complexity 
was holding the industry back as many technologies 
were not implemented because of their complexity. 
One survey respondent stated, “66% of all IT projects 
either fail outright or take much longer to install than 
expected because of their complexity.” As the complexity 
of technology increases, its usefulness decreases, because it 
becomes “too complex to use.” Also, the effi ciency of using 
these technologies decreases, because managing the use 
of complex systems often increases rather than mitigates 
workload. Furthermore, high levels of complexity can 
result in an operator missing or misunderstanding even 
critical pieces of information. These types of performance 
errors are of particular concern to those work domains 
where safety is mission-critical. 

Unfortunately, as information technology has become 
an inescapable part of the aviation system, the aviation 
industry cannot avoid the problem of information com-
plexity. In particular, air traffi c control (ATC) work is 
performed in a dynamic environment where controllers 
continuously receive large volumes of information from 
multiple sources; they must monitor this information for 
changes in the environment, and they must make deci-
sions and perform effective actions in a timely manner. As 
technological capabilities have developed over time, there 
has been a tendency to add information to ATC displays 
and to automate controller functions. Although these new 
technologies are meant to improve ATC performance, they 
can also increase the information complexity with which 
the controller has to contend. The last thing controllers 
need from new technologies is to be overloaded by large 

amounts of information they cannot use. Thus, to have 
a new technology operate safely, effi ciently, and at its full 
performance potential, its complexity should be mini-
mized within its operational scope. Before the industry will 
be able to reliably control the complexity of new systems, 
it will need an objective way to measure the complexity 
associated with new information technologies.

The purpose of this study was to develop metrics 
of information complexity that can be applied to the 
evaluation of ATC displays. For it to be applicable, the 
complexity measures need to meet the following require-
ments: 1) quantitatively correlated with performance 
measures; 2) independent of specifi c ATC displays; and 
3) as much as possible, independent of users’ experience 
with a display. As an initial attempt, Xing and Manning 
(2005) performed an extensive review of previous com-
plexity studies and analyzed the fi ndings of these studies 
for their potential application to ATC displays. It was 
hoped that previously developed measures could be found 
that would meet the purpose and requirements stated 
above. Instead, they found that most of the measurements 
of complexity focused either on the display system or 
on the information processing of the human operator, 
while seldom addressing both. A complete description of 
complexity for ATC technologies needs to consider the 
factors involved with both the human operators and the 
display systems. The literature analysis concluded that, for 
ATC display applications, a measurement that integrated 
both human information processing and display factors 
would need to be developed. 

The purpose of this study raised three basic questions: 
What is complexity? How complex is too complex for 
users? Finally, is it possible to quantitatively measure the 
complexity of ATC displays? We organized this paper 
into two parts to address the above questions. In the fi rst 
part, “Identifying Complexity Metrics,” we summarize 
our understanding of information complexity from a 
literature analysis. Then we describe a framework that 
decomposes complexity into a set of factors associated 
with human information processing. After that, we 
present a set of complexity metrics developed for ATC 
displays. Parts of the preliminary version of these results 
have been published in an earlier report (Xing, 2004). 
In the second part, “A Preliminary Case Study: Assessing 
the Cognitive Complexity of the Microsoft PowerPoint 
Interface,” we present a preliminary case study to dem-
onstrate how the metrics can be used to evaluate the 
complexity of a display.
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IDENTIFYING COMPLEXITY 
METRICS

Methods
We fi rst derived a defi nition of information complex-

ity from an analysis of the literature. We next developed 
a framework for measuring complexity. The framework 
is generally applicable to interactive visual displays. The 
framework specifi es that complexity is constrained by 
task requirements. We then applied the framework to 
ATC displays and developed a set of complexity metrics 
by combining the mechanisms of human information 
processing with ATC task requirements. 

RESULTS

Understanding Information Complexity
Although there are many defi nitions of complexity in 

the literature, the term has proven to be very diffi cult to 
accurately defi ne. For instance, a simple Internet search 
on complexity will yield literally hundreds of defi nitions 
and measures. Xing and Manning (2005) reviewed and 
synthesized the major contributions to complexity associ-
ated with visual displays. In their report, they reviewed 
the literature from several lines of study: general concepts, 
information complexity, cognitive complexity, and display 
complexity. While each of these areas is focused on differ-
ent aspects of human or machine systems, the defi nitions 
have a great deal in common. Essentially, all the reviewed 
defi nitions and measures converged on three factors as-
sociated with complexity: quantity of basic information 
elements in a system, variety of elements, and the relations 
between elements. Xing and Manning’s analysis revealed 
that the concept of complexity is multi–dimensional and 
cannot be suffi ciently described with a single measure, 
and they proposed that complexity is the combination 
of the three basic factors.

Quantity. Intuitively, the quantity of basic elements is 
related to the complexity of a system. Whether referring 
to minimum description size of a system (Bennett, 1990; 
Crutchfi eld & Young, 1989), number of states (McCabe, 
1976), or number of “chunks” in cognition (Klemola, 
2000), all studies of quantity seem to agree that a larger 
quantity corresponds to a higher degree of complexity. 
Nevertheless, quantity alone is not suffi cient to defi ne 
complexity in its entirety. 

Variety. Indeed, the variety of the elements in a system 
is also a key component of many defi nitions of complex-
ity. The concept of variety has been widely used in the 
literature. For instance, many researchers have used the 
degree of disorder or entropy in information theories as the 
measure for variety or complexity, even though disorder 
alone cannot suffi ciently describe complexity. As Drozdz 

and other researchers have pointed out, complexity lies 
somewhere between order and disorder (Drozdz, Kwapien, 
Speth, & Wojcik , 2002). Burleson and Caplan (1998) 
summed up the use of variety for defi ning complexity 
when they stated, “The concept of complexity refers to 
diversity of forms, to emergence of coherent patterns 
out of randomness and also to some ability of frequent 
switching among such patterns.”

Relations. Relations among the basic elements (rules 
of structures, interconnections, etc.) of a system also 
contribute to its complexity. Individual parts of a system 
are held together by the relations of its internal structure. 
An example would be a chess pattern. A chess pattern 
can be of great complexity to a player because the player 
values the relations between the elements, not just the 
number and the variety of them.

Xing and Manning also identifi ed two principles that 
contribute to the diversity of complexity measures. The 
fi rst principle is observer dependency. As Edmonds (1999) 
described, “Complexity only makes sense when consid-
ered relative to a given observer.” One example would be 
the experiment performed by Grassberger (1991) where 
subjects were asked to assess the complexity of a set of 
images. Figure 1 shows three images that Grassberger used 
in the experiment. The variety of the images, measured 
as the disorder of image pixels, increased from left to 
right. Thus, the image on the right is the most complex 
from the perspective of computer image processing. Yet, 
human subjects perceived the middle one as the most 

complex. The reason is that the human visual system 
processes visual features within small local areas rather 
than individual pixels, per se. Those features include line 
orientation, spatial frequency, luminance contrast, color, 
etc. The image in the middle of Figure 1 contains many 
distinctive visual features, while the left and right images 
are composed of homogeneous texture with little visual 
features. This experiment indicates that the effects of 
variety on complexity depend on how observers process 
information.

The second principle is task dependency. That is, the 
complexity of things depends on which aspect you are 
concerned with. For example, if the task is to count peas 
in a basket, then the complexity of the peas does not vary 

Figure 1: Variety increases from left to right, yet 
humans perceives the middle one the most complex. 
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with the number of the peas and variations in the shape 
or color of the peas. Therefore, it is essential to determine 
the task requirements of a visual display before assessing 
its complexity. 

To summarize our understanding of information com-
plexity, we generalized the following defi nition from the 
literature: Complexity is the combination of three basic 
factors: quantity, variety, and relation of basic elements; 
all three of which are evaluated by the mechanisms of 
observers’ information processing and constrained by 
task requirements. 

A Framework for Decomposing Factors of Informa-
tion Complexity

Since complexity depends on how observers process 
information, we looked into the mechanisms of informa-
tion processing in the human brain. Based on the extensive 
literature, we outlined a conceptual model of human 
information processing associated with the use of visual 
displays. In this simple model, information presented 
via visual display devices is processed in three stages: 
perception, cognition, and action. Through perception, 
a user acquires visual features of displayed information. 
The perceived information then feeds into the cognition 
stage, where one’s perception is integrated with informa-
tion from long-term memory, and an internal (mental) 
representation of the display is generated. Based on this 
representation, users can then make action plans to use 
the information or interact with the display. 

Given that several hundreds of brain areas have been 
identifi ed for special aspects of information processing, 
the above model is over-simplifi ed and we only use it 
for application purposes. The defi nitions of perception 
and cognition have been controversial; however, opin-
ions about the basic distinction between perception 
and cognition are more consistent among researchers: 
Perception does not necessarily involve working memory 
while cognitive activities are based on working memory. 
At the perception stage, the brain responds to a stimulus 

with neuronal activities, and the activities end with the 
offset of the stimulus. However, after the stimulus ends, 
the neuronal activity for cognitive processing continues 
until an action or a plan for actions is made and executed. 
In this sense, our model is similar to Wickens’ model 
for interface evaluation, where information is processed 
at four sequential stages: perception, working memory, 
decision, and action (1991).

While our three-stage classifi cation of brain functions 
is coarse, those stages have intrinsically different mecha-
nisms of information processing. One example would be 
the neuronal response patterns over time, as illustrated 
in Figure 2. Perceptual neuronal responses (left panel) 
start following the onset of a stimulus and ends after the 
stimulus is no longer present, while the cognitive responses 
(middle panel) remain for an extended period without 
the stimulus, such sustained activity is the substrate of 
working memory. On the other hand, neuronal responses 
in the cortical pre-motor areas become activated before an 
action and end after the action plan is executed. Another 
example is the way in which information is encoded. 
Perceptual information processing is initially performed 
in a parallel manner. Thousands of visual neurons are 
activated by a visual image and they simultaneously 
encode many pieces of the image. Thus, the perceptual 
system offers a relatively broad information bandwidth. 
On the other hand, working memory, as the basis of 
cognitive activities, has a highly limited capacity. That is, 
only a few pieces of information can be simultaneously 
encoded (Cowan, 2001). Consequently, the information 
bandwidth of the cognition stage is much less than that 
for perception. Finally, the cortical areas that encode 
action plans are characterized with “one plan at a time,” 
yielding an even narrower bandwidth (Georgopoulos, 
Schwartz, & Kettner, 1986; Pouget, Zemel, & Dayan, 
2000; Xing & Andersen, 2000).

Given the inherent differences in the three stages, the 
three complexity factors should be separately evaluated at 
each stage. This results in a 3x3 matrix, as shown in Table 

Cognition ActionPerception

Stimulus

B
ra

in
 a

ct
iv

ity

Action execution

Time

Working memory

Figure 2: Activity patterns over time for information processing in the three stages. 
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1, with the rows being the three complexity factors and 
columns being the three stages. Therefore, we decompose 
complexity into nine metrics. Each metric describes the 
effect of the complexity factor on information processing 
at a given stage, so it is associated with the operator’s task 
performance. For example, one of the metrics that we 
proposed is the degree of clutter (described in detail later). 
Clutter occurs when the perception of a central target is 
masked by the presence of overlaying and immediately 
surrounding stimuli. Clutter directly affects the speed and 
accuracy of text reading and target detection. With the 
known capacity limits of brain information processing, 
these metrics can elucidate why a visual display can be 
too complex for human operators. Given the principle 
that complexity is constrained by task requirements, the 
format of each metric may vary with different applica-
tions. Next, we used this framework to develop metrics 
specifi cally for ATC displays.

Metrics of Information Complexity for ATC Displays
Since complexity is constrained by task requirements, 

developing metrics for ATC displays needs to consider the 
generic tasks associated with using the displays. Therefore, 
we used the following steps to develop the metrics:

Identify task requirements;
Determine corresponding brain functions pertinent 
to the task requirements; and
Choose the metric that can measure the effects of the 
complexity factor on the brain functions.

This procedure requires understanding the nature of 
the tasks associated with using displays. Since the purpose 
of this study is to develop complexity measures for generic 
ATC displays, we extracted some typical characteristics 
of those displays:

The displays contain mainly text, icons, and other 
binary graphical patterns (symbol, charts, etc.); 
Many categories or types of data are presented in in-
termingled and sometimes overlapped patterns; 
Displays are often dynamic; information is continu-
ously updated; and
Displays are interactive; users actively access to and 
update information. 

•
•

•

•

•

•

•

Perceptual Complexity
We derived the following basic perceptual tasks for 

using generic ATC displays. The generic tasks include: 
1) Detect critical messages; 2) Search for data of a given 
category; and 3) Scan / rapidly read graphic patterns and 
text. The perceptual functions involved in these tasks 
include target pop-out (Pop-out means that a visual target 
can be effortlessly detected irrespective of the amount 
of surrounding visual materials), detection, search, seg-
mentation, text reading, etc. To drive measurements of 
the effects of the complexity factors on the performance 
of these tasks, we need to understand the underlying 
mechanisms of these functions.

The mechanisms of the above visual tasks can be 
described with the well-known two-step model of visual 
information processing. Figure 3 illustrates the model 
in which the visual system processes information in two 
steps. In the fi rst step, a visual image is segmented into 
distinctive visual objects, and salient targets pop out of 
the image. This step involves parallel processing. Based 
on the results of the parallel processing, the second step 
involves the visual system serially focusing on the salient 
targets or selected objects so that information can be ana-
lyzed in detail. Next we evaluated the three complexity 
factors in this perceptual model to derive the metrics of 
perceptual complexity.

Quantity evaluated by perception. According to the 
perceptual model, the quantity factor does not affect im-
age segmentation and target pop-out due to their parallel 
processing. However, it does affect the serial processing of 
visual details. Processing time increases with the number 
of visual elements in a display. Since serial processing is 
limited to the information available within retinal fovea 
where the eyes are fi xated, the basic visual element in serial 
processing is the fi xation. Therefore, we propose that the 
metric of Quantity evaluated by perception is the number 
of fi xation groups. A fi xation group is defi ned as a set of 
visual stimuli that can be perceived within a foveal fi xation 
for detailed analysis. Typically, a foveal fi xation spans a 
viewing angle of about 2-4 degrees. The average time to 
search for a particular target on a display increases with 
the number of fi xation groups. While there is no physi-
ological limit on how many fi xations one can make on 

Table 1: Metrics of information complexity 

Perception Cognition Action 

Quantity

Variety

Relation
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a display, visual experiments have demonstrated that it 
takes 600-700ms for an observer to perceive the informa-
tion in one fi xation. Therefore, the capacity limit of this 
metric is determined by the time available for users to 
monitor a display. For example, if an air traffi c controller 
has ten seconds maximally to scan all the information on 
a display, then the number of fi xation groups included 
in the display should be less than 14.

Figure 4 illustrates the concept of the metric. Both 
pictures contain aircraft symbols and datablocks, mim-
icking those on controllers’ radar displays. Controllers 
typically scan the datablocks and fi xate on important 
ones for detailed processing. Thus, each datablock can 
be counted as one fi xation group. The picture on the left 
panel has four datablocks and to scan them all would take 
at least 4 × 600ms = 2. 4 sec. In contrast, the picture on 
the right panel has 11 datablocks so it would take at least 
11× 600ms = 6.6 sec to scan all of them. 

In many applications, displays are crowded and it 
takes many fi xations to view all the information. One 
strategy to reduce perceptual complexity is to use color 
or other cues to aid visual segmentation, so information 
can be segregated into several objects. Consequently, 
the number of fi xations required to complete the visual 
search is reduced. 

Variety evaluated by perception. Variety is related 
to image segmentation and pop-out, both based on the 
uniformity and distinction of the visual features. There-
fore, we proposed that this metric involved the number 
of different visual features, including distinctive colors, 
luminance contrast, spatial frequency or size, texture, 
and motion signals in a display. Increasing the variety of 
visual features leads to diffi culties in visual segmentation 
and target pop-out; as a result, a complex display cannot 
be effi ciently organized, and salient targets cannot be 
instantly detected without being searched. In addition, 
visual studies have demonstrated that switching between 
visual features such as color and luminance contrast 
increases search time. This effect is called “cost of switch-
ing.” Switching also reduces the reliability of text reading 
and target detection. Consider, for example, that the two 
pictures in Figure 5 contain the same materials. The text 
in the left panel has the same font and uses three colors. 
The red letters “LA” indicate an alert that controllers 
need to instantly detect and pay attention to. The blue 
and black text represents two categories of datablocks. 
This picture uses three visual features (colors) to seg-
ment the displayed information, and the segmentation 
is very effective. However, the fi gure in the right panel 
uses many visual features (colors, font, sizes, etc) and 

Object 
segmentation

Salient area 
pop-out

Detailed
processing

(contrast, 
orientation,
speed,  …)     

Serial
searching

Figure 3: Diagram of the two-step perceptual model.  
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Figure 4: Graphic illustration of the effects of the quantity factor on perception.
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segmentation becomes impossible. As a result, the right 
fi gure appears to be more complex than the one on the 
left due to its variety. 

Relation evaluated by perception. The relationship 
of visual elements affects the processing of detailed visual 
information. In particular, the perceived contrast of a 
visual stimulus depends on the physical contrast of the 
stimulus and other visual stimuli in its surrounding area. 
Contrast is important as the diffi culty of text reading 
and graphic target detection are primarily determined by 
the perceived contrast. Therefore, we proposed that the 
metric for relation evaluated by perception was the degree 
of clutter, defi ned as the effect of the visual perception of 
a stimulus being masked by the presence of other stimuli. 
Clutter can increase search time and reduce target detec-
tion as well as text readability. The effect is apparent when 
background visual stimuli are spatially superimposed on 
the target. Moreover, the perceived luminance contrast 
of a visual target can also be largely suppressed by the 
presence of surrounding stimuli. Reduction in perceived 
contrast results in signifi cant deterioration of text read-
ability. Xing and Heeger (2001) examined this effect and 
found that the perceived contrast of a sine-grating patch 
embedded in a large patch of the same kind of gratings 
was about half the contrast perceived when the central 

patch was presented alone. However, when a blank gap 
was introduced between the central and surrounding 
patch, the suppression effect became much weaker. These 
experimental results implicitly suggested two methods to 
reduce the clutter effect: 1) reducing the amount of text 
in a display and, 2) keeping blank surrounds for targets 
to be quickly read or detected. 

Figure 6 is an illustration of the clutter effect. The 
picture on the left shows the datablocks in a baseline 
confl ict alert display to alert pilots of potential confl icts 
with other aircraft. The picture on the right shows the 
datablocks on a prototype of the display improvement. 
Since pilots primarily need only the aircraft heading and 
altitude information, the prototype displays altitude in 
the datablock and uses a simple triangle to indicate the 
current heading direction of the aircraft. The additional 
information is hidden and displayed only upon the user’s 
request. The clutter is thus greatly reduced, and the infor-
mation can be more easily read. Notice that this declutter 
strategy works for pilot but not controllers who need to 
see the hidden information most of the time. Controllers 
typically declutter their radar displays by showing part of 
the datablock (called limited-datablock) when too many 
aircraft make the displays crowded.
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Figure 6: Illustration of the clutter effect on text reading and target detection. 
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Cognitive Complexity
We theorized that the following cognitive tasks are 

performed when operators interact with ATC displays. 
The generic cognitive tasks include 1) constructing, main-
taining, and updating the mental representation of the 
information contained in the display; 2) comprehending 
text and graphic information; and 3) binding (or asso-
ciating) items of information to plan an action or make 
a decision. All of these cognitive tasks require working 
memory. Therefore, measures of cognitive complexity 
should be based on quantifying the demand that using 
a display imposes on working memory. 

Traditionally, working memory has been considered 
as the limited-capacity storage system involved in the 
maintenance and manipulation of information over short 
periods of time. However, recent fi ndings suggest that 
working memory for maintenance is different from that for 
manipulation. Memory for maintenance is about chunks, 
or elements that are in our conscious awareness in the 
absence of sensory inputs, while memory for manipulation 
is about the independent elements or variables that must 
be simultaneously considered to plan an action or make 
a decision (Cowan, 2001; Halford, Wilson, & Phillips, 
1998). Based on recent fi ndings from psychophysical 
and neurophysiological studies, we generalized a work-
ing memory model that incorporates maintenance and 
manipulation memory, and we used the model to evaluate 
the complexity factors. 

Figure 7 shows a diagram of the working memory 
model. It consists of input mechanisms (long-term 
memory and inputs from sensory systems) and two work-
ing memory buffers: processing memory and maintenance 
memory. We used the term “processing” rather than the 

traditional term “manipulation” to be consistent with 
the recent literature and to emphasize that this type of 
memory is for processing information, not for maintain-
ing it. The circles in each buffer represent the elements 
of information. Open circles represent items of available 
information; fi lled circles represents information selected 
for an action. The arrows represent information fl ow 
between the buffers.

The model performs tasks through interactions be-
tween processing memory and maintenance memory. 
Below are the basic ways that the model processes a 
complex task:

Maintenance memory keeps items of information 
“on-line” without being attended to; such items form a 
“to-do” list for completing a task; they can be quickly 
retrieved and are subject to decay if not attended to 
over a period of time. 
Processing memory binds pieces of information that 
are simultaneously needed for planning an action or 
making a decision. 
Processing memory retrieves information from sensory 
systems, maintenance memory, and / or long-term 
memory. Information needed for an action or deci-
sion is selected from those sources and associated in 
processing memory. 
Depending on the task, processing memory can discard 
information that is no longer needed or register new 
information into maintenance memory for later use.

The limit for representational complexity. According 
to our model, “too complex to use” is when the memory 
demand for processing the displayed information exceeds 
the capacity of working memory. We generalized the 

•

•

•

•

Long-term memory Sensory systems

Processing 
memory

Maintenance
memory

Decision-making

Figure 7: The diagram of a working-memory model for cognitive 
information processing. 
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results of working capacity limits from the literature and 
used them as the upper-limits of cognitive complexity for 
displays. In the model, the items in maintenance memory 
do not need to be retrieved simultaneously but should 
be maintained over a period during which the user is 
attending to other information. Thus, representational 
complexity, defi ned as the number of functional units, 
is in accordance with the operation span of working 
memory. Conway and Engle (1996) proposed that the 
operation span is about the limitation in the ability to use 
controlled processing to maintain information in an active, 
quickly retrievable state. They found that the number 
of items one can reliably recall is typically in a range of 
5~16, with a mean value of 9~11. Other studies hinted 
at similar limitations. For example, Willems, Allen, and 
Stein (1999) reported that a controller could correctly 
recall up to 11 aircraft that he or she operated.

Variety evaluated by cognition. Once information is 
organized into independent units or chunks and held in 
maintenance memory, the variety of information chunks 
does not affect cognitive task performance. Task perfor-
mance is not affected because the chunks are meant to 
be different. However, the variety factor in the temporal 
domain (i.e., dynamic changes of information) affects 
information fl ow between processing and maintenance 
memory. Therefore, we proposed that the metric was the 
amount or frequency of unpredictable information onset 
that demands a change in the contents of maintenance 
memory. We refer to this metric as dynamic complex-
ity. Information changes in a display impose cognitive 
loads in several ways: 1) increasing maintenance memory 
load; sudden onset of visual targets or even changes in 
luminance of visual patterns (Schmidt, Vogel, Woodman, 
& Luck, 2002); 2) increasing information fl ow between 
maintenance and processing memory; and 3) reducing 
the stability of mental representation. To build a mental 
representation takes time. As a result, if too many enti-
ties in maintenance memory are updated at a high rate, 
the mental representation tends to deteriorate or even 
collapse. This corresponds to users’ “losing the picture” 
(Hopkin, 1995).

The limit of dynamic complexity. While many 
studies have demonstrated that information can be lost 
if it is rapidly presented or immediately disturbed by 
the onset of new stimuli, there are no conclusive results 
in the current literature about the temporal capacity of 
working memory. 

Relation evaluated by cognition. According to the 
memory model, the relation between elements of in-
formation is handled by processing memory that binds 
pieces of information simultaneously needed to plan an 
action or make a decision. Thus, this metric measures the 
demand for processing memory. We used the defi nition 

of relational complexity proposed by Halford et al. as the 
metric to describe how the relation factor of complexity 
affects cognition. The metric is defi ned as the number 
of independent elements or dimensions of information 
that must be simultaneously bonded to use information. 
Many cognitive processes, such as selection, manipulation 
of goal hierarchies, reasoning, and planning, are examples 
of processing at high levels of relational complexity. 
Halford argued that the more interacting variables that 
have to be processed in parallel, the higher both the 
cognitive demand and computational cost will be. Since 
processing memory links pieces of information that are 
simultaneously needed for task performance, relational 
complexity is a straightforward measure of the processing 
memory load of a task.

The limit of relational complexity. Halford et al. 
further demonstrated that normal adults could reliably 
integrate up to four relations in parallel while children 
can only integrate one or two relations. This quaternary 
limitation appears to be consistent with other studies that 
demonstrated the capacity limit of processing memory as 
3~5 items (Cowan, 2001). Cowan reviewed the literature 
on processing memory and concluded that the human 
capacity limit is three to four items on average. Many 
visual experiments have revealed that the capacity of vi-
sual processing memory is about four items. As another 
example, in a single sentence the maximal number of 
concepts the sentence can contain and still be reliably 
interpreted is also four.

Action Complexity 
We derived the following basic action-related tasks for 

using ATC displays from ATC task analyses found in the 
literature. The generic tasks include: 1) responding to 
onset of alert/warning messages and other requests from 
a display; 2) locating and acquiring specifi c information; 
and 3) entering data into the display system. The action 
functions involved in these tasks include planning eye/
head/hand/body movements, sequential movements, oral 
communication, etc. 

Figure 8 is a simplifi ed diagram of action information 
processing. According to the literature, the parietal and 
frontal cortices are involved in planning actions, and 
the motor cortices are responsible for executing planned 
actions (Andersen, Snyder, Bradley, & Xing, 1997). A 
common feature of these cortices is population coding. 
That is, all the neurons in a cortical area work together 
to encode a single action plan, and only after the plan 
is executed do they begin to encode the next (Georgop-
oulos, Schwartz, & Kettner, 1986; Pouget, Zemel, & 
Dayan, 2000; Xing & Andersen, 2000). Therefore, the 
brain can only execute one action plan at a time. Using 
a display to perform a specifi c task may require multiple 
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actions. Figure 8 provides a framework for multi-step 
action planning. The framework is based on the fact that 
the brain is able to hold several action plans and execute 
them sequentially. When performing multiple tasks with 
a display, users actually switch action planning back and 
forth. The switch can be so quick that they feel that they 
are doing multiple things at the same time. However, 
information can be misinterpreted or lost during these 
quick switches. Next, we use this framework to evaluate 
the complexity factors and derive the metrics of action 
complexity. 

Quantity evaluated by action. The quantity factor 
affects the fi rst part of the action model, the requested 
actions. Performing physical interactions with a display 
costs time and takes users away from other perceptual and 
cognitive tasks. Therefore, we proposed that the metric 
was the minimal amount of keystrokes, mouse move-
ments, and transitions of action modes required to use 
displayed information. Compared with keystrokes and 
mouse movements, the time needed for eye and head 
movements is negligible. Therefore, we only considered 
keystrokes and mouse movements. An action transition 
is a change of action modes, such as from keystrokes to 
mouse movements or vice versa. Those transitions also 
take time and require the brain to coordinate different 
action modes. Sears (1994) proposed a layout complexity 
metric as the summed product of the frequency of action 
transitions and the cost of transitions. The two factors in 
our metrics, the amount of manual movements and the 
transitions between the movements, are essentially the 
same as Sears’ metric. 

Variety evaluated by action. The variety factor affects 
storage of action plans. Therefore, we propose that the 
metric is action depth, defi ned as the number of serial 
steps needed to plan (or select from a number of action 
options) to acquire information. Following the need to 
increase the variety of actions, today’s display systems 
tend to use multi-level structures to cope with more 

diverse environmental perturbations and reduce the dif-
fi culty of decision-making. In such systems, a task of any 
complexity can be decomposed into a series of subtasks, 
each represented by a subgoal. Some researchers have 
used the number of serializable subgoals as a measure 
of complexity for a system with a multi-level structure 
(Heylighen, 1989).

Relation evaluated by action. The relation factor affects 
action planning. The brain cortices related to motor planning 
can only program one action plan at a time. Therefore, we 
propose that this metric should be the number of simulta-
neous action goals required to use displayed information. 
Since the brain can only reliably program one action plan 
at a time, ideally each action should result in only one ac-
tion goal for the next step. In the case where more than one 
action goal needs to be planned simultaneously, the brain 
has to switch back and forth between the goals. Errors may 
occur when switches of planning occur at a fast pace. 

Table 2 summarizes the 3x3 metrics we developed for 
generic ATC displays. The metrics describe the objective 
aspects of complexity. So far, we have developed the metric 
defi nitions, yet the algorithms or methods of computing 
each metric remain to be developed or implemented from 
the literature. Next we describe a preliminary case study to 
explore the methods of applying our metrics to computing 
cognitive complexity of a human- computer interface.

A PRELIMINARY CASE STUDY: ASSESSING THE 
COGNITIVE COMPLEXITY OF THE MICROSOFT 

POWERPOINT INTERFACE

The purpose of this case study was to explore how to 
apply the proposed metrics to evaluate display complex-
ity. Microsoft PowerPoint™ is one of the most popular 
software applications for making presentations. Using our 
complexity metrics, we assessed the cognitive complexity 
of the PowerPoint interface. 

Action planning
Sequenced plans

Execution

Requested actions 

Figure 8: Diagram of action information processing. 
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Methods
We performed the study in the following steps:
1) Assessing representational complexity: 24 Pow-

erPoint users were asked to visualize their PowerPoint 
interface and list the functions that are most essential 
and useful (or frequently used). The average number of 
listed functions was used as the index of representational 
complexity. 

2) Assessing processing complexity: We calculated 
the elements of information needed to access each basic 
function and took the average number of the elements 
as the index of processing complexity. 

3) Assessing dynamic complexity: We counted the 
number of unexpected changes in the interface and used 
it as the index of dynamic complexity. 

RESULTS

Representational Complexity
Figure 9 shows the indices of estimated representational 

complexity. The horizontal axis represents the number 
of frequently used functions the users listed. The vertical 
axis represents the number of users responding. All but 
one user listed 5~13 basic functions. The mean number 
of listed basic functions was 8.1. 

Processing Complexity
Table 3 indicates how we estimated processing com-

plexity. The table presents the top 11 most frequently 
listed functions, the elements of information required 
to access the function, and the indices of processing 
complexity counted as the number of the elements. 
The “*” associated with an index indicates the situation 
where a function can be accessed through a drop-down 
menu or directly through an icon on the top layer of the 
interface, depending on individual customization. The 
results show that the indices of processing complexity 
for these individual functions are either zero or one. We 
used the average of the indices as a rough estimation of 
the processing complexity of the interface. The average 
index is 0.66.

In addition, dynamic complexity for the PowerPoint 
interface is zero because the interface does not have any 
unpredicted changes of information or functions. 

Table 4 presents the summarized results of the com-
plexity evaluation of the PowerPoint interface. The upper 
row displays the three metrics; the middle row indicates 
the estimated indices of the metrics; and the bottom 
row compares the indices to the corresponding capac-
ity limits of working memory. The results indicate that 
the estimated indices of complexity for the PowerPoint 
interface are well below the capacity limits. 

DISCUSSION

This paper presents a framework to decompose infor-
mation complexity and 3x3 complexity metrics for ATC 
displays. Previous work has reported measures similar to 
the individual metrics we proposed (see Xing & Man-
ning for a review). Value can be gained from comparing 
our metrics with similar ones found in the literature 
and by integrating existing complexity measures into 
our framework.

Perceptual Complexity in the Literature
Many algorithms have been developed to address image 

or pattern complexity, but most are based on information 
theories and have low correlations with human judgment. 
In contrast, Tullis (1985) developed a set of metrics to 

Table 2: Metrics of information complexity 

Perception Cognition Action 

Quantity No. of fixation groups No. of functional units Amount of action cost 

Variety No. of visual features Dynamic complexity Action depth 

Relation Degree of clutter Relational complexity No. of action goals 

4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

No. of frequently used functions

N
o.

 o
f r

es
po

ns
es

N=24

Figure 9: Estimated representational complexity. 
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measure display complexity from the perspective of hu-
man performance on visual search tasks. The metrics were 
comprised of four basic characteristics of display formats 
to describe how well users can extract information from 
displays. They included a) overall density of displayed 
items, b) local density of characters, c) number and aver-
age group size, and d) layout complexity, which describes 
how well the arrangement of items on a display follows 
a predictable visual scheme. Tullis showed that these 
metrics are highly correlated with subjects’ performance 
time in visual search tasks. The overall and local density 
characteristics, together, can be a measure of our clutter 
metric; the number of groups corresponds to our metric 
of fi xation groups; and the layout complexity is some-
what related to the variety of visual features. Therefore, 
for limited applications, we can use Tullis’ metrics as the 
quantitative measurements for the perceptual complexity 
we proposed. 

Table 3: Estimated processing complexity for PowerPoint interface 

Basic function Elements needed to 
access the function 

Processing complexity 
of the function 

Copy/paste Edit 1 

Insert picture Insert 1 

Slide layout Format 1 or 0* 

Save file File 1 

Text box Insert 1 

Format text Format 1 or 0* 

Open PowerPoint File 1 

Slide show  0 

Set font 
characteristics Format 1 or 0* 

Insert new slide Insert 1 

Draw shape / line Draw (Autoshapes) 1 or 0* 

Table 4: Summary of the complexity evaluation of PowerPoint 

Metric Representational 
complexity

Processing
complexity

Dynamic
complexity

Index 8.1 0-1 0 

Relative to capacity limits 8.1/(9~11) (0~1)/(3~4) 0 

One drawback of Tullis’ metrics is that those measure-
ments were specifi ed for text-dominant displays but not 
for graphical ones. It is hard to defi ne Tullis’ groups in 
spatially continuous two-dimensional images with vary-
ing colors and luminance contrast. On the other hand, 
Rosenholtz, Li, Mansfi eld, and Jin (2005) proposed a 
feature congestion measure of display clutter in which clut-
ter is considered as the degradation of task performance 
caused by the density of visual features such as color or 
luminance contrast. This measure is related to our clut-
ter metric and can be applied to graphic visual displays. 
Unfortunately, the algorithm requires displayed materials 
to be converted to digitized images to compute the fea-
ture congestion. That is often not practical for dynamic 
displays in which visual images evolve rapidly. 
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Comparisons With Other Measures of Cognitive 
Complexity in the Literature

Previous studies of cognitive complexity have focused 
on text comprehension, creativity, social phenomena, 
etc. For example, Crokett (1965) used the concept of 
“level of hierarchic integration of constructs” to defi ne 
cognitive complexity. With this defi nition, cognitive 
complexity is associated with increasing differentiation 
(containing a greater number of constructs), articulation 
(consisting of more refi ned and abstract elements), and 
hierarchic integration (organized and interconnected). We 
identifi ed three metrics of cognitive complexity based on 
working memory: number of functional units, number 
or frequency of unpredictable changes, and number of 
relations. Our metric, the number of functional units, 
is similar to the measure of constructs in the literature. 
We also proposed relational complexity as a metric to 
quantify how the relation factor of complexity affects 
cognition. This measure corresponds to the intercon-
nected hierarchical integration proposed by Crokett. In 
addition, we proposed to use the frequency of unpredict-
able information changes to measure the variety factor of 
complexity. However, this dynamic aspect of cognitive 
complexity has been seldom studied. 

Measures of cognitive complexity, explicitly or im-
plicitly, depend on cognitive task analyses that reveal 
the cognitive aspects of tasks and knowledge needed for 
situation awareness, decision-making, planning, etc. One 
popular cognitive task analysis method is GOMS: Goal, 
Operator, Methods, and Selection (Card, Moran, & 
Newell, 1983). This method seeks to analyze and model 
the knowledge and skills a user must develop to perform 
tasks on a device or system. The result is a description 
of the Goals, Operators, Methods, and Selection rules 
for any task. Currently we are exploring how to calculate 
the three cognitive metrics based on GOMS and other 
similar analyses.

Relevant Measures of Action Complexity in the 
Literature

Many methods have been developed to assess the com-
plexity of human-computer interfaces (McCabe, 1976; 
Rauterberg, 1992). Those methods require modeling a 
system’s states and transitions between states. Unfortu-
nately, it is implausible to directly apply such methods to 
ATC displays. Controllers use displays adaptively, and no 
standardized procedure has been specifi ed. Thus, there are 
no clearly defi ned states and transitions in their interac-
tions with ATC displays. If the use of a display can be 
described explicitly with states and transitions, it implies 

that controllers are forced to manipulate the display fol-
lowing a fi xed procedure. That would be contrary to the 
design philosophy. 

One measure related to action complexity is Sears’ layout 
appropriateness metric (Sears, 1994). Sears proposed this 
metric to assess users’ performance when using a com-
puter interface. The metric was the summed product of 
the frequency of action transitions and the cost of these 
transitions. The two factors comprising our metric of 
action cost, number of manual movements, and transi-
tions between the movements are essentially the same 
as Sears’ metric. Sears used the distance that users must 
move the computer mouse and the size of the objects to 
be moved as the cost of a transition. This metric can be 
used to evaluate the effi ciency of a user-interface layout 
and compute the extent to which a display demands 
action. However, it does not apply to ATC displays well 
because it primarily emphasizes the effects of mouse 
movements, while many other kinds of actions are 
involved in using ATC displays (Allendoerfer, Zin-
gale, Pai, & Willems, 2006) . 

Perhaps the Keystroke Level Model (KLM) proposed 
by Card, Noran, and Newell (1980) is more applicable 
to measure action complexity within the ATC domain. 
The model measures the sum of the execution time of 
sequenced operations, including key strokes, mouse 
movement, switches, and mental preparation for a physi-
cal action. While most of these operations correspond to 
our metric of action cost, the last operation — mental 
preparation — is somewhat related to the other two ac-
tion metrics: action depth and simultaneous action goals. 
Compared to Sears’s metric, the KLM model considered 
the effects of key strokes and mental preparation. Both 
play crucial roles in controllers’ interacting with ATC 
displays. Allendoerfer et al. documented the frequency 
of use of en route controller commands using radar 
displays and measured the time and number of key-
strokes or mouse clicks required to perform those 
commands. They found that controllers entered 
information on the radar display more frequently 
than they moved things around. They also proposed 
that the time spent looking at the keyboard or screen 
while entering commands should be included in the 
assessment of display usage characteristics. These 
results suggested that the KLM model is a potential 
candidate to objectively measure action complexity 
for ATC displays. Next, we need to explore how to 
calculate action complexity based on the measure-
ments like those in the KLM model. 
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CONCLUSIONS

This paper presents a framework for decomposing 
factors of information complexity and a set of metrics 
to measure ATC display complexity. The framework is 
described as follows: 1) information complexity is the 
combination of three basic factors: quantity, variety, and 
relation; 2) complexity factors need to be evaluated with 
the mechanisms of brain information processing at three 
stages of information processing: perception, cognition, 
and action; and 3) the metrics of complexity can be de-
rived by associating task requirements to brain functions. 
The framework incorporates many human factors studies 
involving interface evaluation. Within this framework, we 
identifi ed a set of complexity metrics for ATC displays. 
Future work will focus on testing the metrics in a real or 
simulated ATC work environment and converting the 
metrics into easy-to-use products for the design and hu-
man factors evaluation of new ATC technologies. 
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